Triple-Layered Carbon-SiO2 Composite Membrane for High Energy Density and Long Cycling Li-S Batteries

ACS Nano. 2019 May 28;13(5):5900-5909. doi: 10.1021/acsnano.9b01703. Epub 2019 Apr 19.

Abstract

Here we report a highly scalable yet flexible triple-layer structured porous C/SiO2 membrane via a facile phase inversion method for advancing Li-sulfur battery technology. As a multifunctional current-collector-free cathode, the conductive dense layer of the C/SiO2 membrane offers hierarchical macropores as an ideal sulfur host to alleviate the volume expansion of sulfur species and facilitate ion/electrolyte transport for fast kinetics, as well as spongelike pores to enable high sulfur loading. The triple-layer structured membrane cathode enables the filling of most sulfur species in the macropores and additional loading of a thin sulfur slurry on the membrane surface, which facilitates ion/electrolyte transport with faster kinetics than the conventional S/C slurry-based cathode. Furthermore, density functional theory simulations and visual adsorption measurements confirm the critical role of the doped SiO2 nanoparticles (∼10 nm) in the asymmetric C membrane in suppressing the shuttle effect of polysulfides via chemisorption and electrocatalysis. The rationally designed C/SiO2 membrane cathodes demonstrate long-term cycling stability of 300 cycles at a high sulfur loading of 2.8 mg cm-2 with a sulfur content of ∼75%. This scalable yet flexible self-supporting cathode design presents a useful strategy for realizing practical applications of high-performance Li-S batteries.

Keywords: C/SiO membrane; Li−S batteries; energy storage; multifunctional; phase-inversion.