Exposure marker discovery of di-2(propylheptyl) phthalate using ultra-performance liquid chromatography-mass spectrometry and a rat model

J Food Drug Anal. 2019 Apr;27(2):585-594. doi: 10.1016/j.jfda.2018.11.002. Epub 2018 Dec 11.

Abstract

Di-(2-propylheptyl) phthalate (DPHP) is a plasticizer and has been suggested to be a subchronic toxicant in rats. DPHP has been approved to be used in food containers and handling by the U.S. Food and Drug Administration. The use of DPHP is still increasing, and the risk of human exposure to DPHP via food may be high. Exposure markers measured in human samples are commonly used to monitor human exposure levels. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and a rat model were used to discover tentative DPHP exposure markers. DPHP and mono-(2-propylheptyl) phthalate (MPHP) were used as the precursors for calculating metabolite candidates using biotransformation mass changes of known enzymatic reactions. A rat model was designed to validate these metabolite candidates as tentative exposure markers. A total of 28 signals show dose-response relationships and these signals contain a few isomers. The chemical structures of 15 tentative exposure marker signals were speculated based on the product ion mass spectra from MS/MS analysis. These 15 signals included 7 chemical structures and some of them may be isomers. The different arrangement of the atoms in space of these isomers should be validated by standard compounds in the future studies. Among the 7 speculated chemical structures, 2 structures were novel tentative DPHP metabolites, and 5 structures have been previously reported in the literature. The results indicate that using UPLC-MS and a rat model can be used to identify tentative toxicant exposure markers.

Keywords: Biotransformation mass changes; Di-(2-propylheptyl) phthalate; Ultra-performance liquid chromatography-mass spectrometry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Biomarkers / metabolism
  • Biomarkers / urine
  • Chromatography, High Pressure Liquid
  • Disease Models, Animal*
  • Male
  • Phthalic Acids / administration & dosage
  • Phthalic Acids / metabolism
  • Phthalic Acids / urine*
  • Rats
  • Rats, Sprague-Dawley
  • Tandem Mass Spectrometry

Substances

  • Biomarkers
  • Phthalic Acids
  • bis(2-propylheptyl)phthalate

Grants and funding

This work was supported by grants (MOST105-2923-M-006-005-MY3 and MOST103-2113-M-006-003-MY3) from the Ministry of Science and Technology and by a grant (No 16-44-03007) from the Russian Scientific Foundation.