Nonsteroidal Anti-inflammatory Drugs Sensitize CD44-Overexpressing Cancer Cells to Hsp90 Inhibitor Through Autophagy Activation

Oncol Res. 2019 Jul 12;27(7):835-847. doi: 10.3727/096504019X15517850319579. Epub 2019 Apr 8.

Abstract

Recently, novel therapeutic strategies have been designed with the aim of killing cancer stem-like cells (CSCs), and considerable interest has been generated in the development of specific therapies that target stemness-related marker of CSCs. In this study, nonsteroidal anti-inflammatory drugs (NSAIDs) significantly potentiated Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-mediated cytotoxicity through apoptotic and autophagic cell death induction, but COX-2-inhibitory function was not required for NSAID-induced autophagy in CD44-overexpressing human chronic myeloid leukemia K562 (CD44highK562) cells. Importantly, we found that treatment with NSAIDs resulted in a dose-dependent increase in LC3-II level and decrease in p62 level and simultaneous reduction in multiple stemness-related markers including CD44, Oct4, c-Myc, and mutant p53 (mutp53) in CD44highK562 cells, suggesting that NSAIDs could induce autophagy, which might mediate degradation of stemness-related marker proteins. Activation of AMPK and inhibition of Akt/mTOR/p70S6K/4EBP1 participated in NSAID-induced autophagy in CD44highK562 cells. In addition, treatment of CD44highK562 cells with NSAIDs inhibited expression of HSF1/Hsps, which resulted in suppression of 17-AAG-induced activation of Hsp70, leading to reversal of 17-AAG resistance and sensitization of CD44highK562 cells to 17-AAG by NSAIDs. In conclusion, combining NSAIDs with Hsp90 inhibitor may offer one of the most promising strategies for eradication of CD44-overexpressing CSCs.

MeSH terms

  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Autophagy / drug effects
  • Benzoquinones / pharmacology*
  • Cell Line, Tumor
  • Drug Synergism
  • HSP90 Heat-Shock Proteins / antagonists & inhibitors*
  • HSP90 Heat-Shock Proteins / metabolism
  • Humans
  • Hyaluronan Receptors / biosynthesis
  • Hyaluronan Receptors / metabolism*
  • K562 Cells
  • Lactams, Macrocyclic / pharmacology*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / metabolism
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Neoplastic Stem Cells / drug effects*
  • Neoplastic Stem Cells / metabolism*
  • Neoplastic Stem Cells / pathology

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Benzoquinones
  • CD44 protein, human
  • HSP90 Heat-Shock Proteins
  • Hyaluronan Receptors
  • Lactams, Macrocyclic
  • tanespimycin