Integration of a (-Cu-S-)n plane in a metal-organic framework affords high electrical conductivity

Nat Commun. 2019 Apr 12;10(1):1721. doi: 10.1038/s41467-019-09682-0.

Abstract

Designing highly conducting metal-organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. Herein, a strategic design in which a metal-sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. The MOF {[Cu2(6-Hmna)(6-mn)]·NH4}n (1, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (-Cu-S-)n plane, is synthesized from the reaction of Cu(NO3)2, and 6,6'-dithiodinicotinic acid via the in situ cleavage of an S-S bond under hydrothermal conditions. A single crystal of the MOF is found to have a low activation energy (6 meV), small bandgap (1.34 eV) and a highest electrical conductivity (10.96 S cm-1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.

Publication types

  • Research Support, Non-U.S. Gov't