Effect of heat-treatment on the pH sensitivity of stainless-steel electrodes as pH sensors

Heliyon. 2019 Mar 28;5(3):e01239. doi: 10.1016/j.heliyon.2019.e01239. eCollection 2019 Mar.

Abstract

Effect of heat-treatment on the pH sensitivity of uncoated stainless-steel electrodes was investigated to comprehend the pH sensitivity of metal-oxide coated stainless-steel electrodes as novel pH sensors. The pH sensitivity of stainless-steel electrodes as-received and heat-treated at 500 °C, 600 °C and 700 °C for 24 h were 91 %, 94 %, 102 % and 91 %, respectively. The pH sensitivity tended to increase with increasing heat-treatment time at a given temperature. Thus, the most suitable heat-treatment condition for the stainless-steel electrodes was 600 °C for 24 h. The austenite phase (fcc) was the main phase on the surface of the heat-treated stainless-steel electrodes. Unexpectedly, the change in the martensite phase (bcc) as the second phase with heat-treatment temperature was similar to the pH sensitivity, with the martensite phase affecting the pH sensitivity. Therefore, it appeared that the pH sensitivity of the metal-oxide coated stainless-steel electrodes was affected by the underlying stainless-steel as well as the outer metal-oxide film coating. A prototype stainless-steel tube electrode was used as a working electrode for demonstrating the depth profiling of pH. The stainless-steel tube electrode showed good performance for measuring pH depth profiles compared to commercially available glass electrodes.

Keywords: Electrochemistry; Materials chemistry; Materials science.