A controlled heat stress during late gestation affects thermoregulation, productive performance, and metabolite profiles of primiparous sow

J Therm Biol. 2019 Apr:81:33-40. doi: 10.1016/j.jtherbio.2019.01.011. Epub 2019 Jan 29.

Abstract

Heat stress (HS) alters metabolic parameters and reduces productive performance in lactating sows. However, the impact of HS on metabolomic profiles of sows during late gestation is not fully understood. We present here, a study investigating the productive performance and metabolic responses in sows when exposed to HS during late gestation. Twelve first-parity Landrace × Large White F1 sows were randomly assigned into two environmental treatments including the thermoneutral (TN) (18-22 °C; n = 6) and HS (28-32 °C; n = 6) conditions from 85 d of gestation until farrowing. Rectal temperature (RT), respiration rates (RR), and surface temperature (ST) were measured every 4 h from 0800 h to 2000 h during the 2nd week. Farrowing and litter Data, as well as duration of eating, were monitored to assess sows' productive performance. Blood biochemical parameters and urinary metabolomic profiles were measured on d107 of gestation to analyze the host metabolic responses. Our results show that HS increased RT, RR, and ST (P < 0.0001). Duration of parturition was prolonged during the delivery in HS group (P < 0.05). Piglet body weight (BW) at d 10 and weaning were reduced by 18% and 17% respectively due to maternal HS (P < 0.001). Duration of eating increased as a result of HS (P < 0.001), consistent with the significant changes observed in serum ghrelin (P < 0.05). Moreover, serum ACTH, cortisol, insulin, creatinine, and BUN saw increase as well (P < 0.05). Plasma NEFA were elevated by HS (P < 0.001). Additionally, HS elevated (VIP>1, log2fold change>0.585, and P < 0.05) the relative concentrations of 5-aminovaleric acid, β-alanine, cysteine, isoleucine, glyceric acid, erythronic acid, mannitol, erythritol, 2-methyl-1,3-butanediol, and pantothenic acid in urine. These ten metabolites mainly affected the pantothenate and CoA biosynthesis, β-alanine metabolism, and glycerolipid metabolism in pregnant sows. In summary, our study suggests that the controlled HS during late gestation elevates thermal responses, reduces productive performance, and more importantly, enhances the catabolism of lipid and protein of first-parity pregnant sow.

Keywords: Heat stress; Late gestation; Metabolism; Productive performance; Sow; Thermoregulation.

MeSH terms

  • Animals
  • Blood Chemical Analysis / veterinary
  • Body Temperature
  • Body Temperature Regulation*
  • Eating
  • Female
  • Gestational Age
  • Heat-Shock Response*
  • Parity
  • Pregnancy
  • Pregnancy Outcome / veterinary*
  • Sus scrofa / metabolism
  • Sus scrofa / physiology*
  • Temperature