Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Population

Front Microbiol. 2019 Mar 22:10:593. doi: 10.3389/fmicb.2019.00593. eCollection 2019.

Abstract

Our objective was to improve current knowledge of sporadic (Spo) nosocomial Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex populations, and thus better understand the epidemiology of Spo and endemoepidemic (EE) strains. Between 1999 and 2010, 133 isolates of Spo Acb complex were obtained from a single hospital. Species were identified by gyrB-PCR, and via gyrB- and rpoB-sequencing. Clonal analysis was undertaken using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Susceptibility to antimicrobial agents was determined by microdilution and E-tests. Carbapenemase genes were detected by PCR. One hundred and one PFGE types were detected. A. baumannii was the most common (67/101 PFGE types), followed by Acinetobacter pittii (22/101), Acinetobacter lactucae (6/101), and Acinetobacter calcoaceticus (2/101). gyrB, rpoB1, and rpoB2 sequencing returned 49, 13, and 16 novel sequences, respectively. Sixty-three sequence types (STs) (38 new STs and 66 new alleles) were detected; the most common were ST2 (29/133 isolates) and ST132 (14/133). Twenty-six OXA-51 allelic variants were detected, nine of which were novel. The PFGE types were generally susceptible (88/101) to all the tested antimicrobials; 3/101 were carbapenem-resistant due to the presence of the genetic structure ISAba2-bla OXA-58-like-ISAba3, and 2/101 were multidrug-resistant. It can be concluded that the examined Spo Acb complex population was mainly composed of A. baumannii. Many different clones were detected (with ST2 clearly dominant), all largely susceptible to antimicrobials; multidrug resistance was rare. In contrast, a previously examined EE Acb population was composed of just four expanding, multidrug-resistant A. baumannii clones -ST2, ST3, ST15, and ST80-.

Keywords: Acinetobacter calcoaceticus-baumannii complex; antimicrobial susceptibility; clonal distribution; epidemic strains; species identification; sporadic strains.