Polymerization-Driven Immobilization of dc-APGD Synthesized Gold Nanoparticles into a Quaternary Ammonium-Based Hydrogel Resulting in a Polymeric Nanocomposite with Heat-Transfer Applications

Polymers (Basel). 2018 Mar 29;10(4):377. doi: 10.3390/polym10040377.

Abstract

A new method for the production of nanocomposites, composed of gold nanoparticles (AuNPs) and (vinylbenzyl)trimethylammonium chloride-co-N,N-methylene bisacrylamide (VBTAC-co-MBA) hydrogel, is described. Raw-AuNPs of defined optical and granulometric properties were synthesized using direct current atmospheric pressure glow discharge (dc-APGD) generated in contact with a solution of HAuCl₄. Different approaches to the polymerization-driven synthesis of Au/VBTAC-co-MBA nanocomposites were tested. It was established that homogenous dispersion of AuNPs in this new nanomaterial with was achieved in the presence of NaOH in the reaction mixture. The new nanocomposite was found to have excellent heat-transfer properties.

Keywords: atmospheric pressure plasma; metallic nanostructures; nanocomposite; resin.