Thermal, Mechanical and Optical Features of Aluminosilicate-Coated Cotton Textiles via the Crosslinking Method

Polymers (Basel). 2018 Jan 9;10(1):57. doi: 10.3390/polym10010057.

Abstract

The presented study focuses on the development of a pad-dry-thermofix functional coating process using a mixture of microporous aluminosilicate particles in diverse bath formulations to impart UV-ray-blocking, thermal stability and easy-care properties to the cotton fabric. The results of Scanning Electron Microscopy (SEM) and X-ray powder Diffraction (XRD) revealed the presence of three different types of zeolites within the examined sample, i.e., the largest amount being zeolite A, followed by the zeolite X, and the zeolite ZSM-5. The surface characterization results of zeolite-coated/cross-linked textiles provided evidence of acceptable UV-ray-blocking properties and increased thermal stability, as well as enhanced tensile strength and breaking tenacity without considerably decreasing the whiteness degree. Moreover, the dry crease recovery angle increased for the cotton fabric cross-linked via an mDMDHEU, and decreased significantly using 30 g/L zeolites negatively influencing qualitative values. TG/DTA results have proven the enlarged thermal stability of aluminosilicate-coated cotton, although combustion was not prevented.

Keywords: cotton; crosslinking agent; functional properties; pad-dry-thermofix; zeolites.