Synthesis and Characterization of Dimmer-Acid-Based Nonisocyanate Polyurethane and Epoxy Resin Composite

Polymers (Basel). 2017 Nov 28;9(12):649. doi: 10.3390/polym9120649.

Abstract

In this study, dimmer-acid-based hybrid nonisocyanate polyurethanes (HNIPUs) were synthesized by the one-step method without catalyst. Three polyamines and two epoxy resins were selected as raw materials for HNIPU, and cyclic carbonate was synthesized based on our previous work. All of the products were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Then, HNIPU coatings were prepared and determined by swelling, water absorption, and water contact angle. The results showed that the HNIPU-4551 have the best mechanical and thermal properties because of its high crosslinking density. Among the different amines, it was confirmed that tetraethylenepentamine was the best amine curing agent for HNIPU coating. Meanwhile, the epoxy resin with a higher epoxy value would also form a higher crosslinking density. Those coatings showed an excellent impact strength, adhesion, flexibility, pencil hardness, hydrophilic, and appropriate crosslinking density.

Keywords: coating; dimer acid; epoxy resin; hybrid nonisocyanate polyurethane.