Wave-Particle Duality in Complex Quantum Systems

J Phys Chem Lett. 2019 May 2;10(9):2121-2129. doi: 10.1021/acs.jpclett.9b00676. Epub 2019 Apr 17.

Abstract

Stunning progress in the experimental resolution and control of natural or man-made complex systems at the level of their quantum mechanical constituents raises the question, across diverse subdisciplines of physics, chemistry, and biology, whether the fundamental quantum nature may condition the dynamical and functional system properties on mesoscopic if not macroscopic scales. However, which are the distinctive signatures of quantum properties in complex systems, notably when modulated by environmental stochasticity and dynamical instabilities? It appears that, to settle this question across the above communities, a shared understanding is needed of the central feature of quantum mechanics: wave-particle duality. In this Perspective, we elaborate how randomness induced by this very quantum property can be discerned from the stochasticity ubiquitous in complex systems already on the classical level. We argue that in the study of increasingly complex systems, such distinction requires the analysis of single incidents of quantum dynamical processes.