Nanoforest: Polyaniline Nanotubes Modified with Carbon Nano-Onions as a Nanocomposite Material for Easy-to-Miniaturize High-Performance Solid-State Supercapacitors

Polymers (Basel). 2018 Dec 19;10(12):1408. doi: 10.3390/polym10121408.

Abstract

This article describes a facile low-cost synthesis of polyaniline nanotube (PANINT)⁻carbon nano-onion (CNO) composites for solid-state supercapacitors. Scanning electron microscopic (SEM) analyses indicate a uniform and ordered composition for the conducting polymer nanotubes immobilized on a thin gold film. The obtained nanocomposites exhibit a brush-like architecture with a specific capacitance of 946 F g-1 at a scan rate of 1 mV s-1. In addition, the nanocomposites offer high conductivity and a porous and well-developed surface area. The PANINT⁻CNO nanocomposites were tested as electrodes with high potential and long-term stability for use in easy-to-miniaturize high-performance supercapacitor devices.

Keywords: carbon nano-onion; conducting polymer; nanocomposite; polyaniline nanotube.