Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods

Polymers (Basel). 2018 Dec 16;10(12):1395. doi: 10.3390/polym10121395.

Abstract

The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard-based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs (Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules.

Keywords: MALDI-TOF-MS; PEGdiol; anionic ring-opening polymerization; monolith; pharmaceutical PEG; reversed-phase chromatography.