Novel Biocompatible and Biodegradable PCL-PLA/ Iron Oxide NPs Marker Clip Composite for Breast Cancer Biopsy

Polymers (Basel). 2018 Nov 26;10(12):1307. doi: 10.3390/polym10121307.

Abstract

Strength and biocompatibility of composite materials (using a polymer matrix) are used in medicine for various devices such as prostheses and marker clips (biomarkers). Marker clips indicate the site of a lesion in the body, specifically for breast cancer diagnosis or treatment. In general, marker clips are made of steel or titanium, but lately, materials containing biodegradable polymers had been proposed. Our hypothesis is that a copolymer of polylactic acid and poly(ε-caprolactone) (PLA-PCL) could be used as marker clip material. After evaluating different polymer rates performance, metallic nanoparticles (NPs) were included to enhance the stability of the best copolymer and a marker clip prototype was proposed. Characterization of nanoparticles was made by dynamic light scattering (DLS), X-ray diffraction (XRD) and magnetic measurements. Mechanical, thermal and radiopacity properties were evaluated for composites formulation. In vitro, radiopaque experiments showed that BM-2 composite had the best performance. In vivo experiments showed that, after five months, the marker clip prototype maintained its shape, visibility and contrast properties. In consequence, a novel formulation of composite (PLA-PCL/metallic nanoparticles) is suitable for further studies as an alternative material for marker clips for breast cancer lesions.

Keywords: PLA-PCL; biopsy; breast cancer; composite; marker clip; metallic nanoparticles.