Amino Functionalization of Reduced Graphene Oxide/Tungsten Disulfide Hybrids and Their Bismaleimide Composites with Enhanced Mechanical Properties

Polymers (Basel). 2018 Oct 27;10(11):1199. doi: 10.3390/polym10111199.

Abstract

A novel graphene-based nanocomposite particles (NH₂-rGO/WS₂), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS₂) grafted with active amino groups (NH₂-rGO/WS₂), was successfully synthesized by an effective and facile method. NH₂-rGO/WS₂ nanoparticles were then used to fabricate new bismaleimide (BMI) composites (NH₂-rGO/WS₂/BMI) via a casting method. The results demonstrated that a suitable amount of NH₂-rGO/WS₂ nanoparticles significantly improved the mechanical properties of the BMI resin. When the loading of NH₂-rGO/WS₂ was only 0.6 wt %, the impact and flexural strength of the composites increased by 91.3% and 62.6%, respectively, compared to the neat BMI resin. Rare studies have reported such tremendous enhancements on the mechanical properties of the BMI resin with trace amounts of fillers. This is attributable to the unique layered structure of NH₂-rGO/WS₂ nanoparticles, fine interfacial adhesion, and uniform dispersion of NH₂-rGO/WS₂ in the BMI resin. Besides, the thermal gravimetrical analysis (TGA) revealed that the addition of NH₂-rGO/WS₂ could also improve the stability of the composites.

Keywords: bismaleimide; graphene-like WS2; mechanical properties; reduced graphene oxide.