Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications

Polymers (Basel). 2019 Jan 22;11(2):187. doi: 10.3390/polym11020187.

Abstract

This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.

Keywords: electrical/thermal conductivity; polymer composites; properties and applications; renewable resources.

Publication types

  • Review