Geometry determination and refinement in the rotation electron diffraction technique

Ultramicroscopy. 2019 Jun:201:68-76. doi: 10.1016/j.ultramic.2019.02.011. Epub 2019 Feb 19.

Abstract

The necessary parameters (rotation axis, incident electron beam direction and beam tilt path) in order to describe the diffraction geometry in the Rotation Electron Diffraction (RED) method during data collection are determined and refined. These parameters are prerequisites for the subsequent calculations of excitation errors, sg, for zero (ZOLZ) or higher order Laue zones (HOLZ) reflections. Comparison with simulated results, for a CoP3 thermoelectric crystal, shows excellent agreement between the two approaches -calculated and simulated. In addition to their determination, a thorough refinement methodology for the incident electron beam direction and beam tilt path has been applied, too, based on Kikuchi lines of HOLZ reflections. Incorporation of the refined excitation error values can be considered both in theoretical calculations for diffracted beam intensities, based on the Bloch wave method, as well as in deducing integrated intensities from experimental rocking curves. The methodology described in this study is quite indispensable, as it forms an essential step for performing dynamical calculations in RED, enabling thus enhanced accuracy in structural parameter clarification. The latter is especially important in the case of thermal factors refinement for e.g. thermoelectrics, which are imperative for material properties' evaluation.

Keywords: Dynamical diffraction; Kikuchi lines; RED; Rotation electron diffraction; Structure determination; Thermoelectric materials.

Publication types

  • Research Support, Non-U.S. Gov't