Multi-scale assessment of eco-hydrological resilience to drought in China over the last three decades

Sci Total Environ. 2019 Jul 1:672:201-211. doi: 10.1016/j.scitotenv.2019.03.408. Epub 2019 Mar 28.

Abstract

Understanding to what extent can terrestrial ecosystems maintain their structure and functions and recover after being hit by drought is critical for sustainable ecosystem management and drought mitigation practices. This study assesses multi-scale (i.e., at grid, climate type, land use, basin, province scales) eco-hydrological resilience to drought over China during the period of 1982-2015, based on Standard Evapotranspiration Deficit Index as well as satellite-retrieved evapotranspiration (ET) and net primary production (NPP). Over the last three decades, the ecosystem water use efficiency (eWUE) increased in most regions of China (especially in Northeast China and North China Plain) in the context of climate change. The western China showed a significant wetting trend with ascending ET, GPP and eWUE. The SEDI and ET showed significantly increasing tendencies but the ecosystem GPP and eWUE did not exhibit obvious responses to regional wetting in the middle and lower reaches of Yangtze River basin. Most terrestrial ecosystems in China were found overall resilient to drought except for mild temperature-fully humid-warm summer at the climate type scale, water type at the land use scale, Northwest Rivers at the basin scale as well as Ningxia, Qinghai, Shanghai and Hong Kong at the province scale. These findings would facilitate the identification of most drought-vulnerable regions for ecosystem management and taking reasonable adaptation measures (e.g., use of alternative water resources or reuse water, water conservation and smart irrigation) to ensure the sustainability of terrestrial ecosystems during the drought periods over China.

Keywords: China; Drought; ET; Eco-hydrological resilience; GPP; Water use efficiency.