Phosphatidylserine Asymmetry Promotes the Membrane Insertion of a Transmembrane Helix

Biophys J. 2019 Apr 23;116(8):1495-1506. doi: 10.1016/j.bpj.2019.03.003. Epub 2019 Mar 19.

Abstract

The plasma membrane (PM) contains an asymmetric distribution of lipids between the inner and outer bilayer leaflets. A lipid of special interest in eukaryotic membranes is the negatively charged phosphatidylserine (PS). In healthy cells, PS is actively sequestered to the inner leaflet of the PM, but PS redistributes to the outer leaflet when the cell is damaged or at the onset of apoptosis. However, the influence of PS asymmetry on membrane protein structure and folding are poorly understood. The pH low insertion peptide (pHLIP) adsorbs to the membrane surface at a neutral pH, but it inserts into the membrane at an acidic pH. We have previously observed that in symmetric vesicles, PS affects the membrane insertion of pHLIP by lowering the pH midpoint of insertion. Here, we studied the effect of PS asymmetry on the membrane interaction of pHLIP. We developed a modified protocol to create asymmetric vesicles containing PS and employed Annexin V labeled with an Alexa Fluor 568 fluorophore as a new probe to quantify PS asymmetry. We observed that the membrane insertion of pHLIP was promoted by the asymmetric distribution of negatively charged PS, which causes a surface charge difference between bilayer leaflets. Our results indicate that lipid asymmetry can modulate the formation of an α-helix on the membrane. A corollary is that model studies using symmetric bilayers to mimic the PM may fail to capture important aspects of protein-membrane interactions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Hydrogen-Ion Concentration
  • Hydrophobic and Hydrophilic Interactions
  • Lipid Bilayers / chemistry*
  • Membrane Proteins / chemistry*
  • Models, Chemical
  • Phosphatidylserines / chemistry*
  • Phosphorylcholine / chemistry
  • Protein Conformation
  • Structure-Activity Relationship

Substances

  • Lipid Bilayers
  • Membrane Proteins
  • Phosphatidylserines
  • pHLIP protein
  • Phosphorylcholine