Functional complementation reveals that 9 of the 13 human V-ATPase subunits can functionally substitute for their yeast orthologs

J Biol Chem. 2019 May 17;294(20):8273-8285. doi: 10.1074/jbc.RA118.006192. Epub 2019 Apr 5.

Abstract

Vacuolar-type H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for acidification of intracellular organelles and potential drug target. It is a multisubunit complex comprising a cytoplasmic V1 domain responsible for ATP hydrolysis and a membrane-embedded Vo domain that contributes to proton translocation across the membrane. Saccharomyces cerevisiae V-ATPase is composed of 14 subunits, deletion of any one of which results in well-defined growth defects. As the structure of V-ATPase and the function of each subunit have been well-characterized in yeast, this organism has been recognized as a preferred model for studies of V-ATPases. In this study, to assess the functional relatedness of the yeast and human V-ATPase subunits, we investigated whether human V-ATPase subunits can complement calcium- or pH-sensitive growth, acidification of the vacuolar lumen, assembly of the V-ATPase complex, and protein sorting in yeast mutants lacking the equivalent yeast genes. These assessments revealed that 9 of the 13 human V-ATPase subunits can partially or fully complement the function of the corresponding yeast subunits. Importantly, sequence similarity was not necessarily correlated with functional complementation. We also found that besides all Vo domain subunits, the V1 F subunit is required for proper assembly of the Vo domain at the endoplasmic reticulum. Furthermore, the human H subunit fully restored the level of vacuolar acidification, but only partially rescued calcium-sensitive growth, suggesting a specific role of the H subunit in V-ATPase activity. These findings provide important insights into functional homologies between yeast and human V-ATPases.

Keywords: Saccharomyces cerevisiae; human; vacuolar ATPase; vacuole; yeast genetics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genetic Complementation Test
  • Humans
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / enzymology
  • Saccharomyces cerevisiae* / genetics
  • Vacuolar Proton-Translocating ATPases* / genetics
  • Vacuolar Proton-Translocating ATPases* / metabolism
  • Vacuoles* / genetics
  • Vacuoles* / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • Vacuolar Proton-Translocating ATPases