Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification

Nat Commun. 2019 Apr 3;10(1):1521. doi: 10.1038/s41467-019-09554-7.

Abstract

The response of the prominent marine dinitrogen (N2)-fixing cyanobacteria Trichodesmium to ocean acidification (OA) is critical to understanding future oceanic biogeochemical cycles. Recent studies have reported conflicting findings on the effect of OA on growth and N2 fixation of Trichodesmium. Here, we quantitatively analyzed experimental data on how Trichodesmium reallocated intracellular iron and energy among key cellular processes in response to OA, and integrated the findings to construct an optimality-based cellular model. The model results indicate that Trichodesmium growth rate decreases under OA primarily due to reduced nitrogenase efficiency. The downregulation of the carbon dioxide (CO2)-concentrating mechanism under OA has little impact on Trichodesmium, and the energy demand of anti-stress responses to OA has a moderate negative effect. We predict that if anthropogenic CO2 emissions continue to rise, OA could reduce global N2 fixation potential of Trichodesmium by 27% in this century, with the largest decrease in iron-limiting regions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Dioxide / metabolism
  • Carbon Dioxide / pharmacology
  • Computer Simulation
  • Energy Metabolism / drug effects
  • Ferredoxins / metabolism
  • Hydrogen-Ion Concentration
  • Iron / metabolism
  • Models, Theoretical
  • Nitrogen / metabolism*
  • Nitrogen Fixation / physiology*
  • Nitrogenase / metabolism*
  • Oceans and Seas
  • Seawater / chemistry
  • Seawater / microbiology
  • Trichodesmium / drug effects
  • Trichodesmium / enzymology
  • Trichodesmium / growth & development
  • Trichodesmium / metabolism*

Substances

  • Ferredoxins
  • Carbon Dioxide
  • Iron
  • Nitrogenase
  • Nitrogen