FexNi9-xS8 (x = 3-6) as potential photocatalysts for solar-driven hydrogen production?

Faraday Discuss. 2019 Jul 4;215(0):216-226. doi: 10.1039/c8fd00173a.

Abstract

The efficient reduction of protons by non-noble metals under mild conditions is a challenge for our modern society. Nature utilises hydrogenases, enzymatic machineries that comprise iron- and nickel- containing active sites, to perform the conversion of protons to hydrogen. We herein report a straightforward synthetic pathway towards well-defined particles of the bio-inspired material FexNi9-xS8, a structural and functional analogue of hydrogenase metal sulfur clusters. Moreover, the potential of pentlandites to serve as photocatalysts for solar-driven H2-production is assessed for the first time. The FexNi9-xS8 materials are visible light responsive (band gaps between 2.02 and 2.49 eV, depending on the pentlandite's Fe : Ni content) and display a conduction band energy close to the thermodynamic potential for proton reduction. Despite the limited driving force, a modest activity for photocatalytic H2 has been observed. Our observations show the potential for the future development of pentlandites as photocatalysts. This work provides a basis to explore powerful synergies between biomimetic chemistry and material design to unlock novel applications in solar energy conversion.

Publication types

  • Research Support, Non-U.S. Gov't