3D-assessment of RVOT dimensions prior percutaneous pulmonary valve implantation: comparison of contrast-enhanced magnetic resonance angiography versus 3D steady-state free precession sequence

Int J Cardiovasc Imaging. 2019 Aug;35(8):1453-1463. doi: 10.1007/s10554-019-01578-w. Epub 2019 Apr 1.

Abstract

To compare contrast-enhanced magnetic resonance angiography (ceMRA) and 3D steady-state free precession (SSFP) during systole and diastole for assessment of the right ventricle outflow tract (RVOT) in patients considered for percutaneous pulmonary valve implantation (PPVI) after tetralogy of Fallot (TOF) repair. We retrospectively evaluated 89 patients (male: 45, mean age 19 ± 8 years), who underwent cardiac-MRI after surgical TOF-repair. Datasets covering the whole heart in systole and diastole were acquired using ECG-gated 3D SSFP and non-gated ceMRA. Measurements were performed in SSFP-sequences and in ceMRA in the narrowest region of the RVOT to obtain the minimum, maximum and effective diameter. Invasive balloon sizing as the gold standard was available in 12 patients. The minimum diameter in diastolic SSFP, systolic SSFP and ceMRA were 21.4 mm (± 6.1 mm), 22.6 mm (± 6.2 mm) and 22.6 mm (± 6.0 mm), respectively. Maximum diameter was 29.9 mm (± 9.5 mm), 30.0 mm (± 7.0 mm) and 28.8 mm (± 8.1 mm) respectively. The effective diameter was 23.2 mm (± 5.7 mm), 27.4 mm (± 6.7 mm) and 24.4 mm (± 6.2 mm), differing significantly between diastole and systole (p < 0.0001). Measurements in ECG-gated SSFP showed a better inter- and intraobserver variability compared to measurements in non-ECG-gated ceMRA. Comparing invasive balloon sizing with our analysis, we found the highest correlation coefficients for the maximum and effective diameter measured in systolic SSFP (R = 0.99 respectively). ECG-gated 3D SSFP enables the identification and characterization of a potential landing zone for PPVI. The maximum and effective systolic diameter allow precise sizing for PPVI. Patients with TOF-repair could benefit from cardiac MRI before PPVI.

Keywords: Magnetic resonance angiography; Preprocedural imaging; Pulmonary valve Insufficiency; Pulmonary valve stenosis; Tetralogy of Fallot.

Publication types

  • Comparative Study

MeSH terms

  • Adolescent
  • Adult
  • Balloon Valvuloplasty
  • Cardiac Catheterization / instrumentation
  • Cardiac Catheterization / methods*
  • Cardiac Surgical Procedures* / adverse effects
  • Cardiac-Gated Imaging Techniques
  • Child
  • Contrast Media / administration & dosage
  • Electrocardiography
  • Female
  • Heart Valve Prosthesis
  • Heart Valve Prosthesis Implantation / instrumentation
  • Heart Valve Prosthesis Implantation / methods*
  • Heart Ventricles / diagnostic imaging*
  • Heart Ventricles / physiopathology
  • Humans
  • Image Interpretation, Computer-Assisted
  • Imaging, Three-Dimensional
  • Magnetic Resonance Angiography / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Observer Variation
  • Predictive Value of Tests
  • Prosthesis Design
  • Pulmonary Valve / diagnostic imaging*
  • Pulmonary Valve / physiopathology
  • Pulmonary Valve / surgery
  • Pulmonary Valve Insufficiency / diagnostic imaging*
  • Pulmonary Valve Insufficiency / etiology
  • Pulmonary Valve Insufficiency / physiopathology
  • Pulmonary Valve Insufficiency / surgery
  • Pulmonary Valve Stenosis / diagnostic imaging*
  • Pulmonary Valve Stenosis / etiology
  • Pulmonary Valve Stenosis / physiopathology
  • Pulmonary Valve Stenosis / surgery
  • Reproducibility of Results
  • Retrospective Studies
  • Tetralogy of Fallot / diagnostic imaging
  • Tetralogy of Fallot / physiopathology
  • Tetralogy of Fallot / surgery*
  • Treatment Outcome
  • Ventricular Function, Right
  • Young Adult

Substances

  • Contrast Media