Intraspecific temporal resource partitioning at white-tailed deer feeding sites

Curr Zool. 2019 Apr;65(2):139-146. doi: 10.1093/cz/zoy051. Epub 2018 Jul 6.

Abstract

Individuals may reduce competition by temporally partitioning their use of a shared resource. Behavioral differences between sexes in ungulates may encourage segregation as individuals attempt to avoid antagonistic interactions. However, dominant sex and age groups may reduce subordinates' access to food resources, regardless of the subordinate's sex. We hypothesized that white-tailed deer Odocoileus virginianus temporally segregated at supplemental feeding sites based on social rank (subordinate: yearling males and adult females; dominant: adult males) and that segregation was affected by phase of the breeding season and diel cycle. If deer temporally segregate according to social rank, we predicted that the resulting activity patterns would manifest in one social class being relatively more susceptible to hunter-induced mortality. We used a multi-state modeling approach to quantify temporal segregation and calculated the probability that a feeding site was in a particular state during diurnal and nocturnal hours for each of the 3 phases of the breeding season. We determined that transition probabilities differed by season and diel cycle and dominant and subordinate social classes clearly avoided each other, with <1% co-occurrence at feeding sites. During the pre-breeding season, the probability of a subordinate being present during diurnal hours was 3.0× more likely than a dominant being present, but did not differ during nocturnal hours. There was no difference for dominants and subordinates during diurnal or nocturnal hours during the breeding season. In the post-breeding season, subordinates were 1.7× more likely to occur at the feeding site than a dominant during diurnal hours but they did not differ during nocturnal hours. Our results indicate that dominance status influences temporal segregation at feeding sites and is affected by the phase of the breeding season. Therefore, the resulting activity patterns may increase subordinates' risk to human predation during the pre-breeding and post-breeding seasons.

Keywords: competition; intraspecific temporal resource partitioning; multistate modeling, predation risk; supplemental feeding sites; white-tailed deer.