Effect of Increasing Species Diversity and Grazing Management on Pasture Productivity, Animal Performance, and Soil Carbon Sequestration of Re-Established Pasture in Canadian Prairie

Animals (Basel). 2019 Mar 29;9(4):127. doi: 10.3390/ani9040127.

Abstract

The objective of the study was to determine the effect of type of pasture mix and grazing management on pasture productivity, animal response and soil organic carbon (SOC) level. Pasture was established in 2001 on 16 paddocks of 2.1 ha that had been primarily in wheat and summer fallow. Treatments consisted of a completely randomized experimental design with two replicates: two pasture mixes (7-species (7-mix) and 12-species (12-mix)) and two grazing systems (continuous grazing (CG) and deferred-rotational grazing (DRG)). Pasture was stocked with commercial yearling Angus steers (Bos Taurus, 354 ± 13 kg) between 2005 and 2014. All pastures were grazed to an average utilization rate of 50% (40% to 60%). Average peak and pre-grazing pasture dry matter (DM) yield and animal response were independent of pasture seed mixture but varied with grazing management and production year. Average peak DM yield was 26.4% higher (p = 0.0003) for pasture under DRG relative to CG (1301 kg ha-1). However, total digestible nutrient for pasture under DRG was 4% lower (p < 0.0001) as compared to CG (60.2%). Average daily weight gain was 18% higher (p = 0.017) for CG than DRG (0.81 kg d-1), likely related to higher pasture quality under CG. Soil carbon sequestration was affected by seed mixture × grazing system interaction (p ≤ 0.004). Over the fourteen years of production, pasture with 7-mix under CG had the lowest (p < 0.01) average SOC stock at 15 cm (24.5 mg ha-1) and 30 cm depth (42.3 mg ha-1). Overall, the results from our study implied that increasing species diversity for pasture managed under CG may increase SOC gain while improving animal productivity.

Keywords: Canada; grazing management; pasture mixture; re-established pasture; soil carbon.