Microwave Pretreatment and Enzymolysis Optimization of the Lotus Seed Protein

Bioengineering (Basel). 2019 Mar 27;6(2):28. doi: 10.3390/bioengineering6020028.

Abstract

Pretreatment with a microwave was conducted before enzymolysis and shown to enhance the enzymolysis, which changed the secondary structure of the lotus seed protein. Under high-power microwave irradiation, sub bonds of the protein were broken, causing disaggregation and unfolding of the secondary structure, namely a decrease in the intermolecular aggregate structure and increase in the random coil structure, making the protein bonds susceptible to papain in the enzymolysis. On the other hand, a response surface methodology (RSM) was launched to investigate the influence of the enzymolysis process variables on the DH (degree of hydrolysis). The statistical analysis revealed that the optimized conditions were a protein substrate concentration of 15 g/L, pH of 5.5, enzymolysis temperature of 57 °C, papain amount of 0.5 g/L, and enzymolysis time of 45 min, for which the predicted value of the DH was 35.64%. The results indicated that a microwave also had better potential for applications in the enzymolysis of foods.

Keywords: hydrolysis degree; irradiation powers; lotus seed protein; microwave; response surface method; structural changes.