Simultaneous Measurement of Turbulence and Particle Kinematics Using Flow Imaging Techniques

J Vis Exp. 2019 Mar 12:(145). doi: 10.3791/58036.

Abstract

Numerous problems in scientific and engineering fields involve understanding the kinematics of particles in turbulent flows, such as contaminants, marine micro-organisms, and/or sediments in the ocean, or fluidized bed reactors and combustion processes in engineered systems. In order to study the effect of turbulence on the kinematics of particles in such flows, simultaneous measurements of both the flow and particle kinematics are required. Non-intrusive, optical flow measurement techniques for measuring turbulence, or for tracking particles, exist but measuring both simultaneously can be challenging due to interference between the techniques. The method presented herein provides a low cost and relatively simple method to make simultaneous measurements of the flow and particle kinematics. A cross section of the flow is measured using a particle image velocimetry (PIV) technique, which provides two components of velocity in the measurement plane. This technique utilizes a pulsed-laser for illumination of the seeded flow field that is imaged by a digital camera. The particle kinematics are simultaneously imaged using a light emitting diode (LED) line light that illuminates a planar cross section of the flow that overlaps with the PIV field-of-view (FOV). The line light is of low enough power that it does not affect the PIV measurements, but powerful enough to illuminate the larger particles of interest imaged using the high-speed camera. High-speed images that contain the laser pulses from the PIV technique are easily filtered by examining the summed intensity level of each high-speed image. By making the frame rate of the high-speed camera incommensurate with that of the PIV camera frame rate, the number of contaminated frames in the high-speed time series can be minimized. The technique is suitable for mean flows that are predominantly two-dimensional, contain particles that are at least 5 times the mean diameter of the PIV seeding tracers, and are low in concentration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Biomechanical Phenomena
  • Lasers
  • Nephelometry and Turbidimetry
  • Rheology / methods*