Antidoping in Insulators and Semiconductors Having Intermediate Bands with Trapped Carriers

Phys Rev Lett. 2019 Mar 15;122(10):106403. doi: 10.1103/PhysRevLett.122.106403.

Abstract

Ordinary doping by electrons (holes) generally means that the Fermi level shifts towards the conduction band (valence band) and that the conductivity of free carriers increases. Recently, however, some peculiar doping characteristics were sporadically recorded in different materials without noting the mechanism: electron doping was observed to cause a portion of the lowest unoccupied band to merge into the valance band, leading to a decrease in conductivity. This behavior, that we dub as "antidoping," was seen in rare-earth nickel oxides SmNiO_{3}, cobalt oxides SrCoO_{2.5}, Li-ion battery materials, and even MgO with metal vacancies. We describe the physical origin of antidoping as well as its inverse problem-the "design principles" that would enable an intelligent search of materials. We find that electron antidoping is expected in materials having preexisting trapped holes and is caused by the annihilation of such "hole polarons" via electron doping. This may offer an unconventional way of controlling conductivity.