The Equatorial Ligand Effect on the Properties and Reactivity of Iron(V) Oxo Intermediates

Chemistry. 2019 Jun 18;25(34):8092-8104. doi: 10.1002/chem.201900708. Epub 2019 May 20.

Abstract

High-valent metal oxo oxidants are common catalytic-cycle intermediates in enzymes and known to be highly reactive. To understand which features of these oxidants affect their reactivity, a series of biomimetic iron(V) oxo oxidants with peripherally substituted biuret-modified tetraamido macrocyclic ligands were synthesized and characterized. Major shifts in the UV/Vis absorption as a result of replacing a group in the equatorial plane of the iron(V) oxo species were found. Further characterization by EPR spectroscopy, ESI-MS, and resonance Raman spectroscopy revealed differences in structure and the electronic configuration of these complexes. A systematic reactivity study with a range of substrates was performed and showed that the reactions are affected by electron-withdrawing substituents in the equatorial ligand, which enhance the reaction rate by almost 1016 orders of magnitude. Thus, the long-range electrostatic perturbations have a major influence on the rate constant. Finally, computational studies identified the various electronic contributions to the rate-determining reaction step and explained how the equatorial ligand periphery affects the properties of the oxidant.

Keywords: density functional calculations; iron; ligand effects; macrocyclic ligands; oxido ligands.