Does reduced oxygen delivery cause lactic acidosis in falciparum malaria? An observational study

Malar J. 2019 Mar 25;18(1):97. doi: 10.1186/s12936-019-2733-y.

Abstract

Background: Lactic acidosis with an elevated lactate-pyruvate ratio suggesting anoxia is a common feature of severe falciparum malaria. High lactate levels are associated with parasitized erythrocyte sequestration in the microcirculation. To assess if there is an additional contribution to hyperlactataemia from relatively inadequate total oxygen delivery, oxygen consumption and delivery were investigated in patients with malaria.

Methods: Adult Bangladeshi and Indian patients with uncomplicated (N = 50) or severe (N = 46) falciparum malaria or suspected bacterial sepsis (N = 27) and healthy participants as controls (N = 26) were recruited at Chittagong Medical College Hospital, Chittagong, Bangladesh and Ispat General Hospital, Rourkela, India. Oxygen delivery (DO2I) was estimated from pulse oximetry, echocardiographic estimates of cardiac index and haematocrit. Oxygen consumption (VO2I) was estimated by expired gas collection.

Results: VO2I was elevated in uncomplicated median (IQR) 185.1 ml/min/m2 (135-215.9) and severe malaria 192 ml/min/m2 (140.7-227.9) relative to healthy persons 107.9 ml/min/m2 (69.9-138.1) (both p < 0.001). Median DO2I was similar in uncomplicated 515 ml/min/m2 (432-612) and severe 487 ml/min/m2 (382-601) malaria and healthy persons 503 ml/min/m2 (447-517) (p = 0.27 and 0.89, respectively). The VO2/DO2 ratio was, therefore, increased by similar amounts in both uncomplicated 0.35 (0.28-0.44) and severe malaria 0.38 (0.29-0.48) relative to healthy participants 0.23 (0.17-0.28) (both p < 0.001). VO2I, DO2I and VO2/DO2 did not correlate with plasma lactate concentrations in severe malaria.

Conclusions: Reduced total oxygen delivery is not a major contributor to lactic acidosis in severe falciparum malaria.

Keywords: Acidosis, lactic; Cardiac output; Haemodynamics; Malaria; Microcirculation; Oxygen consumption.

MeSH terms

  • Acidosis, Lactic / metabolism*
  • Adult
  • Bangladesh
  • Female
  • Humans
  • India
  • Malaria, Falciparum / metabolism*
  • Male
  • Middle Aged
  • Oxygen Consumption / physiology*
  • Sepsis / metabolism*
  • Young Adult