Cu2+-assisted laccase from Trametes versicolor enhanced self-polyreaction of triclosan

Chemosphere. 2019 Jun:225:745-754. doi: 10.1016/j.chemosphere.2019.03.079. Epub 2019 Mar 15.

Abstract

Laccase-mediated humification processes (L-MHPs) can be used to polymerize and transform phenolic pollutants in water. However, the mechanism on Cu2+ impacts the self-polymerization of multi-purpose antimicrobial agent triclosan during L-MHPs is less understood. Here, the influence of divalent metal ions (DMIs) on Trametes versicolor laccase activity was investigated. Particularly, the performance of Cu2+-assisted laccase in polymerizing and transforming triclosan was systematically characterized. Compared with DMI-free, the activity of laccase was obviously accelerated with Cu2+ present due to copper is a vital component of laccase catalytic center. It was found that Cu2+-assisted laccase was effective in transforming triclosan, and the enzymatic reaction kinetic constants increased from 0.28 to 0.73 h-1 as the Cu2+ concentration increased (0-3.0 mM). Identification of intermediate products revealed that laccase oxidation predominantly generated triclosan dimers, trimers, and tetramers. The presence of Cu2+ reinforced self-polymerization of triclosan via forming more triclosan oligomers relative to the Cu2+-free, which likely attributed to the enhancement of laccase activity and stability with Cu2+ present in L-MHPs. A possible transformation mechanism was proposed as follows: Laccase initially catalyzed the oxidation of triclosan to generate phenoxy radical intermediates, which self-coupled to each other subsequently by radical-mediated CC and COC covalent binding, forming oligomers and polymers. The growth inhibitory assays of freshwater microalgae (Chlamydomonas reinhardtii and Scenedesmus obliquus) demonstrated that the self-polymerized triclosan by L-MHPs had lower toxicity than the parent compound. These findings implied that Cu2+-assisted laccase was an effective strategy for rapidly self-polyreaction and detoxication of triclosan from Cu2+-triclosan combined polluted wastewater.

Keywords: Cu(2+)-assisted laccase; Self-polyreaction; Toxicity assessment; Transformation mechanism; Triclosan.

MeSH terms

  • Copper / chemistry*
  • Laccase / chemistry*
  • Trametes / pathogenicity*
  • Triclosan / chemistry*

Substances

  • Triclosan
  • Copper
  • Laccase