Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment

Biosens Bioelectron. 2019 May 1:132:368-374. doi: 10.1016/j.bios.2019.03.020. Epub 2019 Mar 12.

Abstract

A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 ± 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.

Keywords: 3D printed flow-cell; Biosensor; Bottom-up fabrication; Optical fiber; Surface plasmon resonance.

MeSH terms

  • Animals
  • Equipment Design
  • Fiber Optic Technology / instrumentation*
  • Goats
  • Gold / chemistry
  • Immunoassay / instrumentation*
  • Immunoglobulin G / analysis*
  • Optical Fibers
  • Printing, Three-Dimensional
  • Rabbits
  • Refractometry / instrumentation
  • Surface Plasmon Resonance / instrumentation*

Substances

  • Immunoglobulin G
  • Gold