Mucin adsorption on vaterite CaCO3 microcrystals for the prediction of mucoadhesive properties

J Colloid Interface Sci. 2019 Jun 1:545:330-339. doi: 10.1016/j.jcis.2019.03.042. Epub 2019 Mar 14.

Abstract

Porous vaterite CaCO3 crystals are widely used as containers for drug loading and as sacrificial templates to assemble polymer-based nano- and micro-particles at mild conditions. Special attention is paid nowadays to mucosal delivery where the glycoprotein mucin plays a crucial role as a main component of a mucous. In this work mucoadhesive properties of vaterite crystals have been tested by investigation of mucin binding to the crystals as a function of (i) time, (ii) glycoprotein concentration, (iii) adsorption conditions and (iv) degree of mucin desialization. Mucin adsorption follows Bangham equation indicating that diffusion into crystal pores is the rate-limiting step. Mucin strongly binds to the crystals (ΔG = -35 ± 4 kJ mol-1) via electrostatic and hydrophobic interactions forming a gel and thus giving the tremendous mucin mass content in the crystals of up to 16%. Despite strong intermolecular mucin-mucin interactions, pure mucin spheres formed after crystal dissolution are unstable. However, introduction of protamine, actively used for mucosal delivery, makes the spheres stable via additional electrostatic bonding. The results of this work indicate that the vaterite crystals are extremely promising carriers for mucosal drug delivery and for development of test-systems for the analysis of the mucoadhesion.

Keywords: Desialated mucin; Layer-by-layer; Mucoadhesion; Multilayer; Protamine.