Effect of Salt on the Ordinary-Extraordinary Transition in Solutions of Charged Macromolecules

J Am Chem Soc. 2019 Apr 10;141(14):5886-5896. doi: 10.1021/jacs.9b00562. Epub 2019 Apr 1.

Abstract

Using dynamic light scattering technique, we address the role of added salt at higher concentrations on the "ordinary-extraordinary" transition in solutions of charged macromolecules. The "ordinary" behavior has previously been associated with a "fast" diffusion coefficient which is independent of salt concentration Cs and polymer concentration Cp if the ratio Cp/ Cs is above a threshold value. The "extraordinary" transition is associated with formation of aggregates, with a "slow" diffusion coefficient, formed from similarly charged macromolecules. By investigating aqueous solutions of sodium poly(styrenesulfonate) and sodium chloride with variations in Cp, Cs, and polymer molecular weight, Mw, we report the emergence of a new diffusive "fast" relaxation mode at higher values of Cp, Cs, and Mw, in addition to the previously known "fast" and "slow" relaxation modes. Furthermore, we find that Mw plays a crucial role on the collective dynamics of polyelectrolyte solutions with salt, instead of just the Cp/ Cs ratio as previously postulated. As Mw is progressively decreased, the salty solution exhibits dynamical transitions from three modes to two modes and then to one mode of relaxation. The emergence of the new fast mode and the dynamical transitions are in marked departure from the general premise of the ordinary-extraordinary transition developed over several decades. In an effort to rationalize our experimental findings we present a theory for the collective dynamics of polyelectrolyte solutions with salt by addressing the coupling between the relaxations of polyelectrolyte chains, counterions from the polymer and added salt, and co-ions from the salt. The predictions are in qualitative agreement with experimental findings. The present combined work of experiments and theory forms the basis for accurately characterizing dynamics of charged macromolecules in salty solutions, which are ubiquitous in biological systems and polyelectrolyte-based technologies.

Publication types

  • Research Support, Non-U.S. Gov't