Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries

Angew Chem Int Ed Engl. 2019 May 20;58(21):7062-7067. doi: 10.1002/anie.201902679. Epub 2019 Apr 17.

Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising energy-storage devices owing to their low cost and high safety. However, their energy-storage mechanisms are complex and not well established. Recent energy-storage mechanisms of ZIBs usually depend on cationic redox processes. Anionic redox processes have not been observed owing to the limitations of cathodes and electrolytes. Herein, we describe highly reversible aqueous ZIBs based on layered VOPO4 cathodes and a water-in-salt electrolyte. Such batteries display reversible oxygen redox chemistry in a high-voltage region. The oxygen redox process not only provides about 27 % additional capacity, but also increases the average operating voltage to around 1.56 V, thus increasing the energy density by approximately 36 %. Furthermore, the oxygen redox process promotes the reversible crystal-structure evolution of VOPO4 during charge/discharge processes, thus resulting in enhanced rate capability and cycling performance.

Keywords: electrochemistry; energy storage; oxygen redox chemistry; vanadium redox chemistry; zinc-ion batteries.