In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody

Anal Chem. 2019 Apr 2;91(7):4640-4648. doi: 10.1021/acs.analchem.8b05979. Epub 2019 Mar 19.

Abstract

Aggregates of therapeutic proteins that can contaminate drug products during manufacture is a growing concern for the pharmaceutical industry because the aggregates are potentially immunogenic. Electron microscopy is a typical, indispensable method for imaging nanometer- to micrometer-sized structures. Nevertheless, it is not ideal because it must be performed with ex situ monitoring under high-vacuum conditions, where the samples could be altered by staining and drying. Here, we introduce a scanning electron-assisted dielectric microscopy (SE-ADM) technique for in-solution imaging of monoclonal immunoglobulin G (IgG) aggregates without staining and drying. Remarkably, SE-ADM allowed assessment of the size and morphology of the IgG aggregates in solution by completely excluding drying-induced artifacts. SE-ADM was also beneficial to study IgG aggregation caused by temporary acid exposure followed by neutralization, pH-shift stress. A box-counting analysis of the SE-ADM images provided fractal dimensions of the larger aggregates, which complemented the fractal dimensions of the smaller aggregates measured by light scattering. The scale-free or self-similarity nature of the fractal aggregates indicated that a common mechanism for antibody aggregation existed between the smaller and larger aggregates. Consequently, SE-ADM is a useful method for characterizing protein aggregates to bridge the gaps that occur among conventional analytical methods, such as those related to in situ/ ex situ techniques or size/morphology assessments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / chemistry*
  • Dynamic Light Scattering
  • Humans
  • Hydrogen-Ion Concentration
  • Image Processing, Computer-Assisted
  • Immunoglobulin G / chemistry
  • Microscopy, Electron, Scanning / methods*
  • Particle Size
  • Protein Aggregates
  • Solutions / chemistry

Substances

  • Antibodies, Monoclonal
  • Immunoglobulin G
  • Protein Aggregates
  • Solutions