A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation

Plant Physiol. 2019 Jun;180(2):882-895. doi: 10.1104/pp.19.00142. Epub 2019 Mar 18.

Abstract

Root nitrate uptake adjusts to the plant's nitrogen demand for growth. Here, we report that OsMADS57, a MADS-box transcription factor, modulates nitrate translocation from rice (Oryza sativa) roots to shoots under low-nitrate conditions. OsMADS57 is abundantly expressed in xylem parenchyma cells of root stele and is induced by nitrate. Compared with wild-type rice plants supplied with 0.2 mM nitrate, osmads57 mutants had 31% less xylem loading of nitrate, while overexpression lines had 2-fold higher levels. Shoot-root 15N content ratios were 40% lower in the mutants and 76% higher in the overexpression lines. Rapid NO3 - root influx experiments showed that mutation of OsMADS57 did not affect root nitrate uptake. Reverse transcription quantitative PCR analysis of OsNRT2 nitrate transporter genes showed that after 5 min in 0.2 mM nitrate, only OsNRT2.3a (a vascular-specific high-affinity nitrate transporter) had reduced (by two-thirds) expression levels. At 60 min of nitrate treatment, lower expression levels were also observed for three additional NRT2 genes (OsNRT2.1/2.2/2.4). Conversely, in the overexpression lines, four NRT2 genes had much higher expression profiles at all time points tested. As previously reported, OsNRT2.3a functions in nitrate translocation, indicating the possible interaction between OsMADS57 and OsNRT2.3a Yeast one-hybrid and transient expression assays demonstrated that OsMADS57 binds to the CArG motif (CATTTTATAG) within the OsNRT2.3a promoter. Moreover, seminal root elongation was inhibited in osmads57 mutants, which may be associated with higher auxin levels in and auxin polar transport to root tips of mutant plants. Taken together, these results suggest that OsMADS57 has a role in regulating nitrate translocation from root to shoot via OsNRT2.3a.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Biological Transport / drug effects
  • Gene Expression Regulation, Plant / drug effects
  • Gene Knockdown Techniques
  • Indoleacetic Acids / metabolism
  • Meristem / drug effects
  • Meristem / metabolism
  • Mutation / genetics
  • Nitrate Reductase / metabolism
  • Nitrates / metabolism*
  • Nitrates / pharmacology
  • Nitrogen Isotopes
  • Oryza / genetics
  • Oryza / metabolism*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Plant Roots / cytology
  • Plant Roots / drug effects
  • Plant Roots / growth & development*
  • Plant Shoots / drug effects
  • Plant Shoots / metabolism
  • Promoter Regions, Genetic
  • Protein Binding / drug effects
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Indoleacetic Acids
  • Nitrates
  • Nitrogen Isotopes
  • Plant Proteins
  • Transcription Factors
  • Nitrate Reductase