A microscopic physical description of electrothermal-induced flow for control of ion current transport in microfluidics interfacing nanofluidics

Electrophoresis. 2019 Oct;40(20):2683-2698. doi: 10.1002/elps.201900105. Epub 2019 Mar 25.

Abstract

The phenomenon of electrothermal (ET) convection has recently captured great attention for transporting fluidic samples in microchannels embedding simple electrode structures. In the classical model of ET-induced flow, a conductivity gradient of buffer medium is supposed to arise from temperature-dependent electrophoretic mobility of ionic species under uniform salt concentrations, so it may not work well in the presence of evident concentration perturbation within the background electrolyte. To solve this problem, we develop herein a microscopic physical description of ET streaming by fully coupling a set of Poisson-Nernst-Planck-Navier-Stokes equations and temperature-dependent fluid physicochemical properties. A comparative study on a standard electrokinetic micropump exploiting asymmetric electrode arrays indicates that, our microscopic model always predicts a lower ET pump flow rate than the classical macroscopic model even with trivial temperature elevation in the liquid. Considering a continuity of total current density in liquids of inhomogeneous polarizability, a moderate degree of fluctuation in ion concentrations on top of the electrode array is enough to exert a significant influence on the induction of free ionic charges, rendering the enhanced numerical treatment much closer to realistic experimental measurement. Then, by placing a pair of thin-film resistive heaters on the bottom of an anodic channel interfacing a cation-exchange medium, we further provide a vivid demonstration of the enhanced model's feasibility in accurately resolving the combined Coulomb force due to the coexistence of an extended space charge layer and smeared interfacial polarizations in an externally-imposed temperature gradient, while this is impossible with conventional linear approximation. This leads to a reliable method to achieve a flexible regulation on spatial-temporal evolution of ion-depletion layer by electroconvective mixing. These results provide useful insights into ET-based flexible control of micro/nanoscale solid entities in modern micro-total-analytical systems.

Keywords: Electrothermal convection; Ion transport control; Micro/nanofluidics; Salt concentration perturbation; Smeared interfacial polarization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Convection
  • Electrochemical Techniques / instrumentation
  • Electrochemical Techniques / methods*
  • Equipment Design
  • Ions / chemistry
  • Microfluidic Analytical Techniques / instrumentation
  • Microfluidic Analytical Techniques / methods*
  • Microscopy / instrumentation
  • Microscopy / methods*
  • Nanotechnology / instrumentation
  • Nanotechnology / methods*
  • Sodium Chloride / chemistry

Substances

  • Ions
  • Sodium Chloride