Doxorubicin-loaded Fe3O4-ZIF-8 nano-composites for hepatocellular carcinoma therapy

J Biomater Appl. 2019 May;33(10):1373-1381. doi: 10.1177/0885328219836540. Epub 2019 Mar 16.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common and malignant cancers and has no effective therapeutic approaches. Chemotherapeutic drug doxorubicin (DOX) is widely used for HCC therapy, but its application is limited by the clinical toxicity. In the present study, an Fe3O4-ZIF-8 magnetic nano-composite was fabricated and used for DOX delivery for HCC therapy. The morphology, structure and property of Fe3O4-ZIF-8 nano-composites were evaluated by scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption isotherms studies. The drug release from DOX@Fe3O4-ZIF-8 was measured in pH 7.4 phosphate-buffered saline. The cellular uptake ability of DOX@Fe3O4-ZIF-8 into hepatocarcinoma cell line (MHCC97H) was visualized with a confocal laser scanning microscope. The effects of Fe3O4-ZIF-8, DOX and DOX@Fe3O4-ZIF-8 against MHCC97H cells were evaluated by CCK-8 assay and flow cytometry assay. Fe3O4-ZIF-8 nano-composites were synthesized and used as a nano-carrier for the delivery of DOX. Because of high drug loading property of ZIF-8, 1 mg Fe3O4-ZIF-8 nano-composites loaded 120 μg DOX when DOX@Fe3O4-ZIF-8 was synthesized in 30 mg/mL DOX solution. The cumulative DOX release curve showed a slow and sustained release pattern over time. The results of CCK-8 assay showed that Fe3O4-ZIF-8 was nontoxic to MHCC97H cells, and DOX@Fe3O4-ZIF-8 presented effective inhibiting effect on cell viability of MHCC97H cells. Cellular uptake assay showed that DOX@Fe3O4-ZIF-8 accumulated in both cytoplasm and nuclei. Moreover, because of valid drug accumulation, DOX@Fe3O4-ZIF-8 exhibited a good inducing effect on cell apoptosis of MHCC97H cells. In conclusion, based on the nontoxic and high drug loading capability of Fe3O4-ZIF-8, DOX@Fe3O4-ZIF-8 presented enhanced effects on HCC cells compared to free DOX, indicating its potential for the chemotherapy of HCC.

Keywords: Nanoparticle; doxorubicin; drug delivery; hepatocellular carcinoma; metal organic frameworks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibiotics, Antineoplastic / administration & dosage*
  • Antibiotics, Antineoplastic / pharmacokinetics
  • Antibiotics, Antineoplastic / pharmacology
  • Apoptosis / drug effects
  • Carcinoma, Hepatocellular / drug therapy*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Doxorubicin / administration & dosage*
  • Doxorubicin / pharmacokinetics
  • Doxorubicin / pharmacology
  • Drug Carriers / chemistry
  • Drug Delivery Systems
  • Drug Liberation
  • Ferrosoferric Oxide / chemistry*
  • Humans
  • Liver Neoplasms / drug therapy*
  • Metal-Organic Frameworks / chemistry*
  • Nanocomposites / chemistry

Substances

  • Antibiotics, Antineoplastic
  • Drug Carriers
  • Metal-Organic Frameworks
  • Doxorubicin
  • Ferrosoferric Oxide