Perfect optical absorption with nanostructured metal films: design and experimental demonstration

Opt Express. 2019 Mar 4;27(5):6842-6850. doi: 10.1364/OE.27.006842.

Abstract

Structuring metal surfaces on the nanoscale has been shown to alter their fundamental processes like reflection or absorption by supporting surface plasmon resonances. Here, we propose metal films with subwavelength rectangular nanostructuring that perfectly absorb the incident radiation in the optical regime. The structures are fabricated with low-cost nanoimprint lithography and thus constitute an appealing alternative to elaborate absorber designs with complex meta-atoms or multilayer structuring. We conduct a thorough numerical analysis to gain physical insight on how the key structural parameters affect the optical response and identify the designs leading to broad spectral and angular bandwidths, both of which are highly desirable in practical absorber applications. Subsequently, we fabricate and measure the structures with an FT-IR spectrometer demonstrating very good agreement with theory. Finally, we assess the performance of the proposed structures as sensing devices by quantifying the dependence of the absorption peak frequency position on the superstrate material.