Femtosecond filamentation and supercontinuum generation in bulk silicon

Opt Lett. 2019 Mar 15;44(6):1343-1346. doi: 10.1364/OL.44.001343.

Abstract

We experimentally study filamentation and supercontinuum generation in bulk silicon crystal using femtosecond mid-infrared pulses with carrier wavelengths in the range of 3.25-4.7 μm, in the presence of three-, four-, and five-photon absorption. Spectral measurements show a fairly stable blueshifted cutoff in the 2.5-2.7 μm range and gradual increase of the long-wave extent with increasing wavelength of the incident pulses, eventually yielding an octave-spanning supercontinuum, covering the wavelength range from 2.5 to 5.8 μm with the input pulses at 4.7 μm. The recorded spatiotemporal intensity distributions of a single filament revealed pulse splitting after the nonlinear focus, in line with the pulse-splitting-based filamentation scenario inherent to normally dispersive dielectric nonlinear media.