Recommendations for Validation of Real-Time PCR Methods for Molecular Diagnostic Identification of Botanicals

J AOAC Int. 2019 Nov 1;102(6):1767-1773. doi: 10.5740/jaoacint.18-0321. Epub 2019 Mar 14.

Abstract

Background: PCR methods are the most commonly used DNA-based identity tool in the commercial food, beverage, and natural health product markets. These methods are routinely used to identify foodborne pathogens and allergens in food. Proper validation methods for some sectors have been established, while there are none in other markets, such as botanicals. Results: A survey of the literature indicates that some validation criteria are not addressed when developing PCR tests for botanicals. Objective: We provide recommendations for qualitative real-time PCR methods for validating identity tests for botanical ingredients. Methods: These include common criteria that underpin the development and validation of rigorous tests, including (1) the aim of the validation test, (2) the applicability of different matrix variants, (3) specificity in identifying the target species ingredient, (4) sensitivity in detecting the smallest amount of the target material, (5) repeatability of methods, (6) reproducibility in detecting the target species in both raw and processed materials, (7) practicability of the test in a commercial laboratory, and (8) comparison with alternative methods. In addition, we recommend additional criteria, according to which the practicability of the test method is evaluated by transferring the method to a second laboratory and by comparison with alternative methods. Conclusions and Highlights: We hope that these recommendations encourage further publication on the validation of PCR methods for many botanical ingredients. These properly validated PCR methods can be developed on small, real-time biotechnology that can be placed directly into the supply chain ledger in support of highly transparent data systems that support QC from the farm to the fork of the consumer.

Publication types

  • Validation Study

MeSH terms

  • Plant Preparations / analysis*
  • Plants / chemistry
  • Real-Time Polymerase Chain Reaction / standards*
  • Reproducibility of Results

Substances

  • Plant Preparations