Phase Transition and Metallization of Orpiment by Raman Spectroscopy, Electrical Conductivity and Theoretical Calculation under High Pressure

Materials (Basel). 2019 Mar 7;12(5):784. doi: 10.3390/ma12050784.

Abstract

The structural, vibrational, and electronic characteristics in orpiment were performed in the diamond anvil cell (DAC), combined with a series of experimental and theoretical research, including Raman spectroscopy, impedance spectroscopy, atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and first-principles theoretical calculations. The isostructural phase transition at ~25.0 GPa was manifested as noticeable changes in the compressibility, bond lengths, and slope of the conductivity, as well as in a continuous change in the pressure dependence of the unit cell volume. Furthermore, a pressure-induced metallization occurred at ~42.0 GPa, accompanied by reversible electrical conductivity. We also determined the metallicity of orpiment at 45.0 GPa by first-principles theoretical calculations, and the results were in good agreement with the results of the temperature-dependent conductivity measurements. The HRTEM and AFM images of the recovered sample confirmed that orpiment remains in the crystalline phase with an intact layered structure and available crystal-shaped clusters. These high-pressure behaviors of orpiment present some crucial information on the structural phase transition, metallization, amorphization and superconductivity for the AB₃-type of engineering materials at high pressure.

Keywords: Raman spectroscopy; diamond anvil cell; electrical conductivity; high pressure; phase transition; pressure-induced metallization.