Enhanced photocatalytic properties of TiO2 nanosheets@2D layered black phosphorus composite with high stability under hydro-oxygen environment

Nanoscale. 2019 Mar 21;11(12):5674-5683. doi: 10.1039/c8nr10476j.

Abstract

Black phosphorus (BP) has gained great attention as a potential candidate in the photocatalytic field due to its tunable bandgap and high-mobility features, however, poor stability behavior and the high charge recombination of BP limit its practical application. In the present work, a liquid phase exfoliation method is employed to prepare layered BP. The as-prepared layered BP is decorated on TiO2 nanosheets to form a TiO2 nanosheets@BP composite, which stabilizes BP existence under a hydro-oxygen environment. Whereafter, the photocatalytic properties of the TiO2 nanosheets@BP composite towards the degradation of Rhodamine B (RhB) are proven to be greatly enhanced compared to those of pure layered BP and TiO2 nanosheets, and the photodegradation rate reached 98% after 120 minutes irradiation under UV-Vis light. It is worth mentioning that the photocatalytic cycling performance of the TiO2 nanosheets@BP composite remained at 92.5% under the irradiation of UV-Vis light after three cycles. The main reason for this lies in the fact that the formation of the TiO2 nanosheets@BP composite may favor light absorption and effectively reduce the recombination of electron-hole pairs.