Towards a second-generation PET/MR insert with enhanced timing and count rate performance

Phys Med Biol. 2019 Apr 12;64(8):085017. doi: 10.1088/1361-6560/ab0efa.

Abstract

Previously we have developed a first-generation PET insert prototype for small animal PET/MR imaging, which used resistor-based charge division multiplexing circuits and SensL B-series silicon photomultipliers (SiPMs). In this work we present results from a second-generation readout board with improved timing and count rate performance. Three detector boards were tested: the first-generation readout board with SensL SPMArray4B (SiPM-B), the second-generation readout board with SensL ArrayC-30035-16P-PCB (SiPM-C) using the 'fast' outputs for timing, and the second generation board using Hamamatsu S11361-3050AE-04 MPPC arrays. Timing data were obtained with detector modules in coincidence with a single-pixel SensL MicroFJ-SMA-30035 reference detector and acquired using standard NIM electronics, while count rate data were acquired using the OpenPET data acquisition electronics system. The full-width at half-maximum (FWHM) coincidence time resolution (CTR) for the SiPM-B, SiPM-C and MPPC designs were 2600 ± 200 ps, 550 ± 50 ps, and 570 ± 30 ps, respectively. OpenPET waveform capture determined the mean signal durations, measured as time above 10% of the maximum amplitude, were 1850 ± 150 ns, 600 ± 25 ns, and 350 ± 25 ns, respectively, where the short signal of the MPPC resulted in reduced pileup effects at higher count rates. Decaying source measurements showed a non-paralyzable dead time of 1.30-1.41 µs for all three detectors tested, which was limited by the signal capture and processing time of the OpenPET system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electronics / standards
  • Magnetic Resonance Imaging / instrumentation*
  • Magnetic Resonance Imaging / methods
  • Multimodal Imaging / instrumentation*
  • Multimodal Imaging / methods
  • Positron-Emission Tomography / instrumentation*
  • Positron-Emission Tomography / methods