Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with Enhanced Cyclability for Lithium-Ion Batteries

ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12594-12604. doi: 10.1021/acsami.9b04050. Epub 2019 Mar 19.

Abstract

The Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode has attracted great interest owing to its low cost, high capacity, and energy density. Nevertheless, rapid capacity fading is a critical problem because of direct contact of NCM811 with electrolytes and hence restrains its wide applications. To prevent the direct contact, the surface inert layer coating becomes a feasible strategy to tackle this problem. However, to achieve a homogeneous surface coating is very challenging. Considering the bonding effect between NCM811, polyvinylpyrrolidone (PVP), and polyaniline (PANI), in this work, we use PVP as an inductive agent to controllably coat a uniform conductive PANI layer on NCM811 (NCM811@PANI-PVP). The coated PANI layer not only serves as a rapid channel for electron conduction, but also prohibits direct contact of the electrode with the electrolyte to effectively hinder side reaction. NCM811@PANI-PVP thus exhibits excellent cyclability (88.7% after 100 cycles at 200 mA g-1) and great rate performance (152 mA h g-1 at 1000 mA g-1). In situ X-ray diffraction and in situ Raman are performed to investigate the charge-discharge mechanism and the cyclability of NCM811@PANI-PVP upon electrochemical reaction. This surfactant-modulated surface uniform coating strategy offers a new modification approach to stabilize Ni-rich cathode materials for lithium-ion batteries.

Keywords: Ni-rich cathode; conductive polymer; excellent cyclability; surfactant inductive agent; uniform surface coating.