In Vitro Generation of Mouse Colon Crypts

ACS Biomater Sci Eng. 2017 Oct 9;3(10):2502-2513. doi: 10.1021/acsbiomaterials.7b00368. Epub 2017 Aug 29.

Abstract

Organoid culture has had a significant impact on in vitro studies of the intestinal epithelium; however, the exquisite architecture, luminal accessibility, and lineage compartmentalization found in vivo has not been recapitulated in the organoid systems. We have used a microengineered platform with suitable extracellular matrix contacts and stiffness to generate a self-renewing mouse colonic epithelium that replicates key architectural and physiological functions found in vivo, including a surface lined with polarized crypts. Chemical gradients applied to the basal-luminal axis compartmentalized the stem/progenitor cells and promoted appropriate lineage differentiation along the in vitro crypt axis so that the tissue possessed a crypt stem cell niche as well as a layer of differentiated cells covering the luminal surface. This new approach combining microengineered scaffolds, native chemical gradients, and biophysical cues to control primary epithelium ex vivo can serve as a highly functional and physiologically relevant in vitro tissue model.

Keywords: differentiation; gradient; intestinal epithelial stem cells; intestine-on-a-chip; microfabrication; tissue mimics.