Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis

Brain Res. 2019 Jul 1:1714:210-217. doi: 10.1016/j.brainres.2019.03.003. Epub 2019 Mar 6.

Abstract

Growth hormone (GH) and prolactin (PRL) are known as pleiotropic hormones. Accordingly, the distribution of their receptors comprises several organs and tissues, including the central nervous system. The appropriate secretion of both hormones is essential for sexual maturation and maintenance of reproductive functions, while defects in their secretion affect puberty onset and can cause infertility. Conversely, GH therapy at a prepubertal age may accelerate puberty. On the other hand, hyperprolactinemia is a frequent cause of infertility. While the action of PRL in some central components of the Hypothalamic-Pituitary-Gonadal (HPG) axis, such as the kisspeptin neurons, has been well documented, the possible effects of GH in the hypothalamus are still elusive. Thus, the present study was designed to investigate whether somatomammotropin hormones are able to modulate the activity of critical neuronal components of the HPG axis, including kisspeptin neurons and cells of the ventral premammillary nucleus (PMv). Our results revealed that GH effects in kisspeptin neurons of the anteroventral periventricular and rostral periventricular nuclei or in PMv neurons relies predominantly on the recruitment of the signal transducer and activator of transcription 5 (STAT5) rather than through acute changes in resting membrane potential. Importantly, kisspeptin neurons located at the arcuate nucleus were not directly responsive to GH. Additionally, our findings further identified PMv neurons as potential targets of PRL, since PRL induces the phosphorylation of STAT5 and depolarizes PMv neurons. Combined, our data provide evidence that GH and PRL may affect the HPG axis via specific hypothalamic neurons.

Keywords: Growth hormone; Kisspeptin; Prolactin; Puberty; STAT5.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arcuate Nucleus of Hypothalamus / metabolism
  • Gonads / metabolism
  • Growth Hormone / metabolism*
  • Growth Hormone / physiology
  • Hypothalamo-Hypophyseal System / metabolism
  • Hypothalamus / metabolism
  • Kisspeptins / metabolism
  • Luteinizing Hormone / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurons / metabolism
  • Phosphorylation
  • Pituitary-Adrenal System / metabolism
  • Prolactin / metabolism*
  • Prolactin / physiology
  • STAT5 Transcription Factor / metabolism
  • Sexual Maturation / physiology*

Substances

  • Kisspeptins
  • STAT5 Transcription Factor
  • Prolactin
  • Luteinizing Hormone
  • Growth Hormone