Experimental Validation of Quantum Steering Ellipsoids and Tests of Volume Monogamy Relations

Phys Rev Lett. 2019 Feb 22;122(7):070402. doi: 10.1103/PhysRevLett.122.070402.

Abstract

The set of all qubit states that can be steered to by measurements on a correlated qubit is predicted to form an ellipsoid-called the quantum steering ellipsoid-in the Bloch ball. This ellipsoid provides a simple visual characterization of the initial two-qubit state, and various aspects of entanglement are reflected in its geometric properties. We experimentally verify these properties via measurements on many different polarization-entangled photonic qubit states. Moreover, for pure three-qubit states, the volumes of the two quantum steering ellipsoids generated by measurements on the first qubit are predicted to satisfy a tight monogamy relation, which is strictly stronger than the well-known monogamy of entanglement for concurrence. We experimentally verify these predictions, using polarization and path entanglement. We also show experimentally that this monogamy relation can be violated by a mixed entangled state, which nevertheless satisfies a weaker monogamy relation.