Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model

Stem Cell Res Ther. 2019 Mar 7;10(1):77. doi: 10.1186/s13287-019-1174-4.

Abstract

Background: Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in cell transplantation-based clinical trials, the mechanisms underlying their response are still poorly understood.

Methods: To further investigate hCPC regenerative process, we established the first in vitro human heterotypic model of myocardial I/R injury using hCPCs and human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs). The co-culture model was established using transwell inserts and evaluated in both ischemia and reperfusion phases regarding secretion of key cytokines, hiPSC-CM viability, and hCPC proliferation. hCPC proteome in response to I/R was further characterized using advanced liquid chromatography mass spectrometry tools.

Results: This model recapitulates hallmarks of I/R, namely hiPSC-CM death upon insult, protective effect of hCPCs on hiPSC-CM viability (37.6% higher vs hiPSC-CM mono-culture), and hCPC proliferation (approximately threefold increase vs hCPCs mono-culture), emphasizing the importance of paracrine communication between these two populations. In particular, in co-culture supernatant upon injury, we report higher angiogenic functionality as well as a significant increase in the CXCL6 secretion rate, suggesting an important role of this chemokine in myocardial regeneration. hCPC whole proteome analysis allowed us to propose new pathways in the hCPC-mediated regenerative process, including cell cycle regulation, proliferation through EGF signaling, and reactive oxygen species detoxification.

Conclusion: This work contributes with new insights into hCPC biology in response to I/R, and the model established constitutes an important tool to study the molecular mechanisms involved in the myocardial regenerative process.

Keywords: Cardiac progenitor cells, myocardial infarction; Ischemia-reperfusion injury; Myocardial ischemia reperfusion injury; Proteomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Induced Pluripotent Stem Cells / metabolism*
  • Induced Pluripotent Stem Cells / pathology
  • Models, Cardiovascular*
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / therapy
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Regeneration*